Inequalities for Dual Affine Quermassintegrals
نویسنده
چکیده
The setting for this paper is n-dimensional Euclidean space Rn. Let n denote the set of convex bodies (compact, convex subsets with nonempty interiors) and n o denote the subset of n that consists of convex bodies with the origin in their interiors. Denote by voli(K | ξ) the i-dimensional volume of the orthogonal projection of K onto an idimensional subspace ξ ⊂Rn. Affine quermassintegrals are important geometric invariants related to the projection of convex body. These quermassintegrals were introduced by Lutwak [7], and can be defined by letting Φ0(K)=V(K),Φn(K)= kn, and for 0 < i < n,
منابع مشابه
The Dual Brunn-minkowski Theory for Bounded Borel Sets: Dual Affine Quermassintegrals and Inequalities
This paper develops a significant extension of E. Lutwak’s dual Brunn-Minkowski theory, originally applicable only to star-shaped sets, to the class of bounded Borel sets. The focus is on expressions and inequalities involving chord-power integrals, random simplex integrals, and dual affine quermassintegrals. New inequalities obtained include those of isoperimetric and Brunn-Minkowski type. A n...
متن کاملOn Inequalities for Quermassintegrals and Dual Quermassintegrals of Difference Bodies
In this paper, inequalities for quermassintegrals and dual quermassintegrals of difference bodies are given. In particular, an extension of the Rogers-Shephard inequality is obtained. Mathematics subject classification (2010): 52A40, 52A20.
متن کاملInequalities for dual quermassintegrals of the radial pth mean bodies
Gardner and Zhang defined the notion of radial pth mean body (p > –1) in the Euclidean space Rn. In this paper, we obtain inequalities for dual quermassintegrals of the radial pth mean bodies. Further, we establish dual quermassintegrals forms of the Zhang projection inequality and the Rogers-Shephard inequality, respectively. Finally, Shephard’s problem concerning the radial pth mean bodies is...
متن کاملOn Sharp Bounds for Marginal Densities of Product Measures
We discuss optimal constants in a recent result of Rudelson and Vershynin on marginal densities. We show that if f is a probability density on R of the form f(x) = ∏n i=1 fi(xi), where each fi is a density on R, say bounded by one, then the density of any marginal πE(f) is bounded by 2 , where k is the dimension of E. The proof relies on an adaptation of Ball’s approach to cube slicing, carried...
متن کاملInequalities for quermassintegrals on k-convex domains
In this paper, we study the Aleksandrov–Fenchel inequalities for quermassintegrals on a class of nonconvex domains. Our proof uses optimal transport maps as a tool to relate curvature quantities of different orders defined on the boundary of the domain. © 2013 Elsevier Inc. All rights reserved.
متن کامل