Inequalities for Dual Affine Quermassintegrals

نویسنده

  • YUAN JUN
چکیده

The setting for this paper is n-dimensional Euclidean space Rn. Let n denote the set of convex bodies (compact, convex subsets with nonempty interiors) and n o denote the subset of n that consists of convex bodies with the origin in their interiors. Denote by voli(K | ξ) the i-dimensional volume of the orthogonal projection of K onto an idimensional subspace ξ ⊂Rn. Affine quermassintegrals are important geometric invariants related to the projection of convex body. These quermassintegrals were introduced by Lutwak [7], and can be defined by letting Φ0(K)=V(K),Φn(K)= kn, and for 0 < i < n,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dual Brunn-minkowski Theory for Bounded Borel Sets: Dual Affine Quermassintegrals and Inequalities

This paper develops a significant extension of E. Lutwak’s dual Brunn-Minkowski theory, originally applicable only to star-shaped sets, to the class of bounded Borel sets. The focus is on expressions and inequalities involving chord-power integrals, random simplex integrals, and dual affine quermassintegrals. New inequalities obtained include those of isoperimetric and Brunn-Minkowski type. A n...

متن کامل

On Inequalities for Quermassintegrals and Dual Quermassintegrals of Difference Bodies

In this paper, inequalities for quermassintegrals and dual quermassintegrals of difference bodies are given. In particular, an extension of the Rogers-Shephard inequality is obtained. Mathematics subject classification (2010): 52A40, 52A20.

متن کامل

Inequalities for dual quermassintegrals of the radial pth mean bodies

Gardner and Zhang defined the notion of radial pth mean body (p > –1) in the Euclidean space Rn. In this paper, we obtain inequalities for dual quermassintegrals of the radial pth mean bodies. Further, we establish dual quermassintegrals forms of the Zhang projection inequality and the Rogers-Shephard inequality, respectively. Finally, Shephard’s problem concerning the radial pth mean bodies is...

متن کامل

On Sharp Bounds for Marginal Densities of Product Measures

We discuss optimal constants in a recent result of Rudelson and Vershynin on marginal densities. We show that if f is a probability density on R of the form f(x) = ∏n i=1 fi(xi), where each fi is a density on R, say bounded by one, then the density of any marginal πE(f) is bounded by 2 , where k is the dimension of E. The proof relies on an adaptation of Ball’s approach to cube slicing, carried...

متن کامل

Inequalities for quermassintegrals on k-convex domains

In this paper, we study the Aleksandrov–Fenchel inequalities for quermassintegrals on a class of nonconvex domains. Our proof uses optimal transport maps as a tool to relate curvature quantities of different orders defined on the boundary of the domain. © 2013 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006